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Abstract
Children who do not sufficiently develop graphomotor skills essential for handwriting often develop graphomotor disabili-
ties (GD), impacting the self-esteem and academic performance of the individual. Current examination methods of GD consist
of scales and questionaries, which lack objectivity, rely on the perceptual abilities of the examiner, and may lead to inade-
quately targeted remediation. Nowadays, one way to address the factor of subjectivity is to incorporate supportive machine
learning (ML) based assessment. However, even with the increasing popularity of decision-support systems facilitating the
diagnosis and assessment of GD, this field still lacks an understanding of deficient kinematics concerning the direction of pen
movement. This study aims to explore the impact of movement direction on the manifestations of graphomotor difficulties in
school-aged. We introduced a new fractional-order derivative-based approach enabling quantification of kinematic aspects of
handwriting concerning the direction of movement using polar plot representation. We validated the novel features in a bar-
rage of machine learning scenarios, testing various training methods based on extreme gradient boosting trees (XGBboost),
Bayesian, and random search hyperparameter tuning methods. Results show that our novel features outperformed the baseline
and provided a balanced accuracy of 87% (sensitivity = 82%, specificity = 92%), performing binary classification (children
with/without graphomotor difficulties). The final model peaked when using only 43 out of 250 novel features, showing that
XGBoost can benefit from feature selection methods. Proposed features provide additional information to an automated
classifier with the potential of human interpretability thanks to the possibility of easy visualization using polar plots.

Keywords Feature extraction ·Graphomotor difficulties · Fractional order derivatives · Polar plot ·Computer-aided diagnosis ·
Machine learning

Introduction

Prior to embarking on the task of handwriting, a child
must first acquire the ability to draw [1]. Typically, between
infancy and the age of six, a child undergoes a develop-
mental process that involves cultivating a range of motor
and non-motor skills. This includes developing motor plan-
ning and execution, visual-perceptual abilities, orthographic
coding, kinesthetic feedback, and visual-motor coordina-
tion [2–4]. These skills, collectively known as graphomotor
skills (GS) [2, 5], become automated around the age of 8
to 9 [6]. They serve as the building blocks for drawing
and, subsequently, handwriting, accompanying individuals
throughout their lives.

Extended author information available on the last page of the article

Children who do not sufficiently develop graphomotor
skills and fail to master drawing and handwriting despite
having adequate cognitive capacity, access to learning oppor-
tunities, and no neurological issues, often develop grapho-
motor disabilities (GD). GD are closely associated with the
termdevelopmental dysgraphia (DD); however,DD typically
encompasses additional higher-level cognitive functions. In
fact, the presence of GD can lead to a diagnosis of DD, par-
ticularly in grades 3 to 4 when handwriting should become
automatic and proficient [6]. The prevalence of GD among
school-aged children ranges between 7 and 34% [6, 7], with
boys being diagnosed with GD 2 to 3 times more frequently
than girls [8].

Children spend up to 60% of their time at school per-
forming handwriting and other fine motor tasks [9]. Despite
the significant negative impact of GD/DD on children’s self-
esteem, academic performance, and overall quality of life [2,
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3], the diagnosis/screening of GD/DD is currently primar-
ily subjective, e.g., based on the assessment of scales such
as the Handwriting Proficiency Screening Questionnaire
(HPSQ) [10], the shortened version of the Concise Assess-
ment Methods of Children Handwriting (SOS: BHK) [11],
or the Handwriting Legibility Scale (HLS) [12]. Besides
the subjectivity, assessment based on these scales has some
other limitations, e.g., they lack sufficient inter-rater con-
sensus [13], or/and they rely on the perceptual abilities of a
rater. As a result, this subjective nature of diagnosis can lead
to poorly targeted remediation, thereby resulting in negative
consequences for the affected children themselves.

It has been experimentally shown that one way to
address the factor of subjectivity is to incorporate supportive
machine learning (ML) based assessment into the diagnostic
chain [14–17]. This approachwas first pioneered in 2016. For
example, Mekyska et al. automatically stratified a cohort of
54 children attending the third grade of a primary school (27
intact and 27 diagnosedwithDD; all participants performed a
simple graphomotor task). The authors utilized a random for-
est (RF) classifier, achieving 96% sensitivity and specificity
in the leave-one-out cross-validation policy [15]. Similarly,
in the same year, Rosenblum et al. analyzed the handwrit-
ing of 99 third graders (50 intact and 49 diagnosed with
DD). They were able to discriminate between both groups
with 90% sensitivity and specificity using an SVM (sup-
port vector machine) classifier in a 10-fold cross-validation
approach [18]. Asselborn et al. employed quantitative analy-
sis of online handwriting in a group of 298 children attending
first to the fifth grade of a primary school (242 intact and 56
diagnosed with DD). Using the RF classifier in a 25-fold
cross-validation approach, they achieved 96.6% sensitivity
and 99.2% specificity [19].

Since 2018, the field of computer-aided diagnosis of GD/DD
has experienced increasing popularity. Researchers have explo-
red different pre-processing steps (e.g., intra-writer normal-
ization [20]), parameterization algorithms (e.g., those based
on the tunable Q-factor wavelet transform [21] or modula-
tion spectra [22]), and handwriting/graphomotor tasks [23].
Attention has also been given to the advancement of the ML
part of decision support systems. Recent solutions are based
on various techniques, such as XGBoost (extreme gradient
boosting) [24], adaptive boosting (AdaBoost) [25], convo-
lutional neural network (CNN) [26, 27], vision transformer
(ViT) [28], non-discrimination regularization in rotational
region convolutional neural network (NDR-R2CNN) [29].
Some of the algorithms are applied directly to handwriting
time-series, while others are applied to the image repre-
sentation (also known as offline handwriting). For further
information, we refer to the following reviews [14, 17].

Drawing/handwriting is a complex activity that requires
coordinated movement of 43 muscles and joints of the arm,
hand, and fingers [30]. Kushki et al. observed that, compared

to the wrist system, the finger system is more susceptible to
the effects of psychological and muscular fatigue [3]. From
an anatomical perspective, the finger system ismore involved
in the vertical movement of a pen, which is more com-
plex due to the involvement of a higher number of muscles
and joints, including the interphalangeal and metacarpopha-
langeal joints [31]. Since vertical movement requires finer
flexions and extensions, it could potentially accentuate poor
kinematics resulting from GD [32]. This has been proven
in several studies, where features such as velocity, acceler-
ation, and jerk extracted from the vertical projection of pen
movement have provided higher accuracies when discrimi-
nating between intact children and children diagnosed with
GD/DD, or have shown better correlations with scores of,
e.g., the Handwriting Proficiency Screening Questionnaire
forChildren [22, 23].Nevertheless, althoughprevious studies
suggest that specific movement directions could accentuate
some manifestations of GD/DD, the body of research has
been limited to vertical and horizontal projections. To the
best of our knowledge, no one has explored the kinematic
abilities of children experiencing GD/DD with respect to the
full range of angles. For example, we have no knowledge
about the kinematic abilities of these children when perform-
ing diagonal movements, such as in the upper loops (spring)
task.

Since handwriting is a result of several interacting phys-
iological mechanisms, children with deficient fine motor
skills, poor dexterity, poor muscle tone, or unspecified motor
clumsiness could introduce irregularity and increased com-
plexity into online handwriting signals [15]. Even though
conventional kinematic measures such as velocity or accel-
eration could potentially quantify these alterations [14, 19,
33], they have limitations. These measures operate in the
integer domain, which limits their ability to capture more
nuanced variations in the handwriting signal. Additionally,
the derivation is a noisy operator [34], amplifying fluctua-
tions in the data, which can lead to less robust quantification
of complex movements. Furthermore, differential measures
are local operators, meaning they only focus on immediate
changes in the signal, making them less suited for capturing
broader patterns or dependencies in handwriting. This is why
researchers introduced a novel framework for advanced kine-
matic analysis of drawing/handwriting based on fractional
order derivatives (FD) [24, 35–37], offering non-integer and
non-local derivation operators.

Generally, FD falls into the field of fractional calculus
(FC), which is the theory of integrals and derivatives of
an arbitrary order [38]. Its concept was introduced almost
at the same age as the well-known differential, integral, or
other standard calculus [39]. It attracted the interest of many
famous mathematicians, such as Euler, Liouville, Laplace,
Abel, Leibniz, Riemann, Grünwald, and Letnikov. The prin-
ciples of FC have been used in themodeling ofmany physical
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and chemical processes, aswell as inmodern engineering and
science in general. Recently, the potential of FChas been ana-
lyzed in computer vision, such as image restoration, super-
resolution, image segmentation, and motion estimation [40–
42]. Moreover, fractional artificial neural networks (FANNs)
have been examined for advanced modeling of various sys-
tems [43], including glucose levels from blood samples [44],
noise removal from EEG signals [45], and disease model-
ing (human immunodeficiency virus — HIV, or malaria [46,
47]). More possibilities of FC employment inmachine learning
have been explored by [48], where authors proposed a frac-
tional generative adversarial network (FGAN), and by [49],
where the authors explored the potential of Caputo’s operator
in backpropagation for neural networks.

To sum up, despite the increasing popularity of decision-
support systems facilitating the diagnosis and assessment of
GD/DD, this field still has several knowledge gaps, such as a
lack of understanding about deficient kinematics in relation
to the direction of pen movement. To address the above-
mentioned limitations and bridge the knowledge gap, the goal
of this study is to explore the impact of movement direction
on the manifestations of GD. More specifically, we aim to:

1. Introduce a new FD-based approach enabling quantifica-
tion of kinematic aspects of handwriting with respect to
the direction of movement,

2. Explore how the GDmanifest in the newly proposed fea-
tures (digital endpoints),

3. Evaluate discrimination power of the features in com-
puter-aided diagnosis.

The rest of the paper is structured as follows: in the
“Methodology” section, the dataset, feature extraction, and
selected statistical methods are explained. In the “Results”
section, the results are summarized. The discussion can be
found in the “Discussion” section and the conclusions are
drawn in the “Conclusion” section.

Methodology

Dataset

Altogether, our dataset consists of online handwriting data
from 106 Czech-speaking children (66 boys and 40 girls)
attending the third and fourth grades of several elementary
schools throughout the Czech Republic. Thirteen of these
children were diagnosed with DD. All the children were
assigned a Handwriting Deficiency Criterion (HDC) score
[6]. HDC is a scoring method that combines scores of the
Handwriting Proficiency Screening Questionnaire for Chil-
dren (HPSQ–C) [50, 51] with an evaluative score provided
by an expert remedial teacher (OEE) and can take integer

Table 1 Handwriting disabilities criterion

OEE OEE(t) HPSQ–C(t) HDC HDC–T

0 0 0 0 0

1 0 0 0

2 0 0 0

2 0 1 0

3 1 0 1 0

3 1 1 2 1

4 1 0 2

4 1 1 3 1

1OEE, overall expert evaluation; OEE(t), overall expert evaluation
(thresholded);HPSQ–C(t), child’s self-evaluation (thresholded);HDC,
new handwriting disabilities criterion; HTC-T, handwriting disabilities
criterion (thresholded)

values in the range of [0; 4], where 0 denotes intact hand-
writing and 4 denotes severely deficient handwriting [6]. For
the purposes of our study, we used a threshold to categorize the
subjects into two classes based on theHDC score, resulting in
a thresholded HDC score (HDC–T). We classified children
with HDC scores of 0 or 1 as intact, and those with HDC
scores above 1 as having moderate to severe disability. The
breakdown of the HDC–T score can be seen in Table 1 and
a more thorough description of the HDC evaluation process,
including theOEE andHPSQ-C rating process can be seen in
a paper byMekyska et al. [6]. Overall, the dataset consists of
32 samples classified with an HDC–T of 1. The demographic
data of the participants can be seen in Table 2.

All children were asked to copy the upper loops (spring)
task, which can be seen in Fig. 1. During the acquisition
phase, the children were shown the figure printed on an A4
sheet of paper. Then the children were asked to copy the fig-
ure on another sheet of paper that was securely fixed to a
digitizing tablet (Wacom Intuos Pro L PHT-80) with a sam-
pling frequency of 150Hz. Using the Wacom Inking Pen,
the children were instructed to copy the figure at their own
comfortable pace. This setup provides the following benefits:

Table 2 Demographic data

3rd grade

Gender N DD Age [y] HDC HDC>1

Boys 17 3 8.75±0.56 1.06±1.02 5

Girls 16 2 8.91±0.59 0.75±0.86 4

Total 33 5 8.83±0.57 0.91±0.95 9

4th grade

Gender N DD Age [y] HDC HDC>1

Boys 49 8 9.90±0.53 1.22±1.06 20

Girls 24 0 9.90±0.51 0.33±0.70 3

Total 73 8 9.90±0.52 0.93±1.04 23

1N, number of samples;DD, developmental dysgraphia; y, years;HDC,
handwriting deficiency criterion
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Fig. 1 Template for the upper
loops task (real width = 220mm,
height = 65mm)

• Using the inkingpenincombinationwith the paper provides
a child with the usual tactile feedback during handwrit-
ing, as well as immediate visual feedback for both the
child and an examiner (who administered the test).

• The digitizing tablet is capable of sampling the hand-
writing process, providing a wealth of data as a discrete
function of time, including position (x and y coordinates),
pressure, tilt, and azimuth.Moreover, it records themove-
ment of the tip of the pen up to 1.5cm above the surface
of the tablet, i.e., the in-air movement.

Examples of a couple of drawn tasks can be seen in Fig. 2.
The project this study is a part of was approved by the Ethics
Committee of theMasaryk University and parents of all chil-
dren enrolled into this study signed an informed consent
form. Throughout the whole study, the Ethical Principles of
Psychologists andCodeofConduct released by theAmerican
Psychological Association were followed [52]. The method-
ology overview can also be seen in Fig. 3.

Fractional Order Derivatives

This study’s fundamentals lie inusing fractionalorderderivatives
in the feature extraction process. The employment of FD in
handwriting and drawing parameterization was developed to

substitute the conventional differential derivatives in order to
improve the quantitative analysis of GD [22, 24, 36, 53–55].

While numerous fractional derivative (FD) definitions
exist, themost significant contributions to the field relevant to
our study come fromM.Caputo’swork [56].An advantage of
Caputo’s FD approach is based on the unnecessity to define
the initial FD conditions [38, 57]. Furthermore, Caputo’s FD
exhibits the property of temporalmemory,which canbe influ-
enced by the nature of the handwriting signal and relatedGD.
Generally, most of the operators consist of two mathemati-
cal operations: convolution and differentiation. The Caputo
derivative differentiates input data before the convolution
operation is applied.More specifically, it transforms the input
handwritten signal into its velocity before the effect of tem-
poral memory is applied to the hand’s movement velocity.
The right-sided Caputo’s fractional operator definition from
1967 is:

CDαz(t) = 1

�(n − α)

t∫

0

(t − τ)n−α−1zn(t) dt, (1)

where CDαz(t) denotes the Caputo derivatives of order α of
the function z(t), � is the gamma function, and n−1 < α ≤
n, n ∈ N, t > 0.

Fig. 2 Upper loops performed
by an intact child (top in blue)
and a child diagnosed with GD
(bottom in red)
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Fig. 3 An overview of the methodology applied in the study

Feature Extraction

In order to enhance the accuracy of automated GD diagno-
sis, we introduce novel features based on FD and polar plots.
We extracted the positional data from the sampled handwrit-
ing of each child, yielding vectors of x and y coordinates.
These coordinates served as inputs to calculate the FD for
α = [0.1; 1] with a step size of 0.1, resulting in ten different

vectors for each processed exercise. It is important to note
that with α = 1, we obtain a full derivative, representing
the velocity of the pen tip. Due to the property of tempo-
ral memory, this computation produces high peak values at
points of discontinuity in the underlying handwriting, such
as the beginning of the exercise and typically when the child
lifted the pen off the digitizing surface. These high-peak val-
ues inside each computed vector were removed as outliers

intact child child with GD

Fig. 4 An example of FD data extracted from a child in the intact group
(displayed in blue on the left) and from the group associated with GD
(shown in red on the right) can be seen in polar plots with ten-degree
binning and the α value of 0.1. It is evident that in the case of the intact
child, the majority of movements were carried out in approximately the

directions of 50◦ and 260◦, corresponding to the long and relatively
straight sections of the upper loop task. Conversely, the movement of
the child diagnosed with GD appears to be distributed more chaotically
across the plot
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during feature extraction. In summary, we extracted 20 fea-
ture vectors (10 for the x-axis and 10 for the y-axis), which
were subsequently processed into the proposed novel hand-
writing features.

Next, we calculated the direction of movement for every
two consecutive samples by determining the angle between
points pn[xn; yn] and pn+1[xn+1; yn+1]. The fixed line, rel-
ative to which the angle was calculated, is a right-facing,
horizontal line, denoted as the 0°angle in Fig. 4. Combining
this vector of angles with the derivatives provides a represen-
tation of the movement dependent on direction. For example,
in the case of α = 1, we obtain vectors representing both the
velocity and the direction of the corresponding movement.
The purpose of this combination is to assess the children’s
ability to execute movements in various directions.

To evaluate the discrimination power of these novel fea-
tures, we also extracted a set of conventionally used baseline
kinematic parameters [6, 14, 16, 25], specifically based on
velocity and angular velocity [58]. These measures were

extracted from the global trajectory as well as the horizontal
and vertical projections of the movement. To transform these
time series into scalar values, we used the median, 95th per-
centile, and non-parametric coefficient of variation defined
as iqr/median, where iqr stands for the interquartile range.
Finally, we included the number of changes in the velocity
profile and its relative form. In summary, we extracted 25
baseline velocity-based features. A complete list of the com-
puted features is provided in the supplementary material (see
Supplementary File S1).

Polar Plots

One of the goals of handwriting featurization is undoubtedly
the extraction of features that are easily interpretable by non-
technicians, such as psychologists or remedial teachers, who
conduct clinical evaluations. Such features are beneficial to
the overall evaluation process as they provide more insight
into the handwriting, even without the use of an automated

Fig. 5 The figure displays the
progression of the FDE with α

values ranging from 0.2 to 1.0 in
multiple polar plots for the
intact child
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evaluator, and allow experts to link these features to specific
manifestations of graphomotor difficulties.

Since the FD-based and direction-based features are rep-
resented by vectors, we have chosen to use polar plots to
interpret the data. Polar plots are typically used to visualize
data that is a function of angles.However, in our dataset, there
can be more than one FD data point for a specific movement
direction. To address this, we employed a pooling method in
which we grouped the data into angle bins. Specifically, we
chose a step size of 0.1◦, resulting in 3600 bins. These bins
were then processed using the following methods:

1. Calculating the median of data points in each bin (Bin
median),

2. Calculating the 95th percentile of data points in each bin
(Bin percentile),

3. Calculating the interquartile range (IQR) of data points
in each bin (Bin IQR).

Additionally, we also calculated the number of elements
of each bin and included this metric in the features, however,
as the number of datapoints is equal across different α they
were calculated only once.

Examples of polar plots (one for an intact child and another
for a child diagnosed with GD) created using the second bin-
ningmethodwith FD data can be seen in Fig. 4. Furthermore,
corresponding polar plots with α values ranging from 0.2 to
1.0 can be found in Figs. 5 and 6.

To easily process these polar plots computationally, we
need to represent them by scalar values. Still in the idea of
easy interpretability, we took the approach of describing the
plots using simple quantifiers, i.e., the total area of the plot
and its centroid in different coordinate systems (Cartesian
[x, y] and polar [r , θ ], where r is the distance from the center
of the plot, and θ is the angle in relation to a line going from
the center of the graph to the right). Considering that we can
create at least two different plots for each α value, based on
the two different bin processing methods we used, we can

Fig. 6 The figure displays the
progression of the FDE with α

values ranging from 0.2 to 1.0 in
multiple polar plots for the child
diagnosed with GD
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extract these descriptors for both of them. Additionally, even
though the raw vector data cannot be plotted, we can still
calculate the same descriptive values. The extracted features,
along with their labels, can be seen in Table 3.

Even though the centroid-based features roughly describe
the dominant movement direction, they might not fully cap-
ture the nature of the plot’s distribution. For instance, a plot
with a strong and narrow peak in one direction might result
in the same centroid position as a plot with smaller values
distributed more widely around the same direction. Further-
more, if a plot is more or less balanced around the zero-point,
the centroid will be located near the center of the plot.

While it might seem redundant to include the coordi-
nates of the centroid in two systems, the information each
coordinate carries is fundamentally different. The Cartesian
system captures the centroid’s horizontal and vertical posi-
tion, describing the balance between left-right and up-down
movements. The polar system clearly shows the distance
from the center (indicating the strength of dominance in a
specific movement direction) and its direction.

Finally, we also extended the featureset by processing the
vectors in bins with a larger size of 45◦, creating eight sec-
tions (octants).

To sum up, each FD order allowed us to construct three
polar plots by binning the vectors with 0.1◦ step while uti-
lizing the three bin processing methods (Taking the median,
95th percentile, and IQR of each bin). From each polar plot,
we then extract five features (Area, CentroidX, CentroidY,
CentroidTheta, and CentroidR). These five features can be
extracted from the raw vectors. Furthermore, this process
extraction process is then repeated for a different bin size
of 45◦. After the removal of features containing NaN values
and/or outliers, we reached the number of 250 features. For
a detailed breakdown of the features, please refer to Supple-
mentary File S1.

Machine Learning

To discriminate between intact children and those diag-
nosed with GD, we employed the XGBoost algorithm [59].

XGBoost (eXtremeGradient Boosting) is amachine learning
technique that builds an ensemble of decision trees through
a boosting process, where each subsequent tree attempts
to correct the errors of the previous ones. Its advantages
include handling imbalanced datasets, high computational
efficiency, and the ability to naturally perform feature selec-
tion by assigning importance scores to features [60]. These
characteristics make XGBoost particularly well-suited for
our study, as it allows us to efficiently handle the complex
and potentially imbalanced dataset of handwriting features
while identifying the most relevant kinematic parameters for
distinguishing between the groups of children.

Prior to training, we controlled for confounding factors
(i.e., sex, age, and class) by training a linear regressionmodel
on each feature with respect to each confounding factor.
Only the residuals from these regressions were used for fur-
ther analysis [61]. To be able to evaluate the performance of
the novel features compared to the baseline feature set, we
trained our models in three scenarios:

• Baseline — using velocity-based baseline features (25
features),

• Novel — using the novel features proposed in the previ-
ous section (250 features),

• Combined — combining the novel and baseline fea-
ture sets into one, measuring their combined perfor-
mance (275 features).

Additionally, we trained multiple models with the same
dataset, varying their settings to compare their suitability
for our use case. The key differences we compared in the
XGBoost variants were:

• Hyperparameter tuning strategies, where we compared
Bayesian search with random search,

• Gradient boosting strategies, where we compared the
GBtree (gradient boosted tree) algorithm with the DART
(dropout additive regression trees) booster.GBTree is one
of the core algorithms used in XGBoost, where gradi-
ent boosting is applied to decision trees. DART is an
advanced version of boosting that uses dropout to reduce
overfitting by randomly dropping trees during training.

Table 3 Features extracted from
the polar plots

Feature basis Raw vector Bin percentile

Area alpha-[α]_Area Q[p]_alpha-[α]_Area

Centroid X alpha-[α]_CentroidX Q[p]_alpha-[α]_CentroidX

Centroid Y alpha-[α]_CentroidY Q[p]_alpha-[α]_CentroidY

Centroid Theta alpha-[α]_CentroidTheta Q[p]_alpha-[α]_CentroidTheta

Centroid R alpha-[α]_CentroidR Q[p]_alpha-[α]_CentroidR

1 alpha-[α], the order of the fractional derivative used; Q[p], the percentile based value extracted from the bin
(Q0.5 denotes median, Q0 denotes IQR, Q0.95 denotes 95th percentile). For example, Q0_alpha−0.1_Area
is the code of a feature calculated as the area of a plot, where each data point is the IQR of a bin from fractional
order derivative of order 0.1
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Table 4 Hyperparameter search space

Hyperparameter DART GBTree

Min Max Min Max

Learning rate 0.01 0.5 0.01 0.5

Max depth 4 8 4 8

Subsample 0.6 1.0 0.6 1.0

ColSample (level) 0.1 1 0.1 1

ColSample (tree) 0.1 1 0.1 1

ColSample (node) 0.1 1 0.1 1

Min child weight 0.1 3 0.1 3

Negative class ratio 1 7 1 7

Drop rate (DART) 0 0.15 0 1

Drop skip (DART) 0 0.2 0 1

Number of trees 50 250 50 1000

Random search is an uninformed hyperparameter tuning
algorithm that treats every set of hyperparameter values sepa-
rately. The values were randomly selected from a predefined
grid, with the number of iterations set to 1000. While ran-
dom search is generally faster than typical grid search, which
systematically iterates over the entire search space, it carries
the potential risk of missing the hyperparameter combina-
tion that would result in the most performant model. This
also brings the apparent disadvantage stemming from the
fact that random search will not explore areas around well-
performing hyperparameter combinations to potentially find
even better sets.

On the other hand, Bayesian search is an informed tun-
ing algorithm, as it takes into account the performance of its
previous iterations. While there are multiple possible imple-
mentations of Bayesian search, a surrogate model is created
and optimized in principle rather than the objective func-
tion itself. After each iteration, selected hyperparameters are
tested on the objective function, and the resulting perfor-
mance is used to update the surrogate model. While the
initial iterations might resemble the random search algo-
rithm, Bayesian search will gradually start optimizing the

model and converge to a solution. Overall, a Bayesian search
should require fewer iterations to reach a comparable or bet-
ter result than a random search.

TheDARTalgorithm is based onproviding a dropout tech-
nique to the more general tree-boosting machine learning
method to address overfitting. After every boosting itera-
tion, a proportion of the trees is dropped [62]. As such,
the DART booster introduces additional hyperparameters:
drop rate, which represents the proportion of dropped trees,
and drop skip, which is the probability that dropout will be
skipped. Both hyperparameters can be set in the range of
[0, 1], with a zero drop rate indicating no dropouts and thus
effectively functioning as a general GBTree booster.

Before hyperparameter tuning, we upsampled the minor-
ity class. Themodelswere all trained for binary classification,
modeling the HDC–T value, using repeated stratified k-fold
cross-validation with 5 repeats and 5 folds. After hyperpa-
rameter tuning, we extracted the ordered list of the most
important features from the trained model. We then trained
the model again on a subset of n most important features,
in the range from 10 features up to the whole feature-
set. Effectively, we trained each model twice, once on the
whole featureset and then again, using the already best-
performing hyperparameters, on a subset of features that
proved beneficial to the model’s performance. Even though
XGBoost should be able to select only the most relevant
features, we still wanted to reduce the complexity of the
final model. Hyperparameters [59] were searched within
the ranges shown in Table 4. Model performance was eval-
uated in terms of balanced accuracy (BACC), sensitivity
(SEN), and specificity (SPE). The final model performance
was evaluated using leave-one-out cross-validation. We also
conducted a post-hoc ROC analysis and further tuned the
decision threshold to achieve a better trade-off between SEN
and SPE. After this step, the evaluationmeasures are denoted
as BACC-pos, SEN-pos, and SPE-pos. Finally, in order to
interpret the models and gain insights, we explored the fea-
ture importance.Hyperparameters for theDARTandGBTree
boosters were mostly set to the same range, except for the
number of trees parameter, which was set to a smaller range

Table 5 Classification results
for the GBTree booster-based
models

Scenario Tuner BACC SEN SPE BACC-pos SEN-pos SPE-pos N

Baseline R 0.82 0.86 0.77 0.83 0.77 0.89 13

B 0.76 0.82 0.69 0.81 0.80 0.82 17

Novel R 0.82 0.88 0.77 0.83 0.88 0.78 46

B 0.79 0.86 0.72 0.87 0.82 0.92 43

Combined R 0.78 0.81 0.74 0.85 0.77 0.93 106

B 0.78 0.84 0.72 0.86 0.80 0.92 61

1BACC, balanced accuracy; SEN, sensitivity; SPE, specificity; BACC-pos, balanced accuracy after decision
threshold adjustment; SEN-pos, sensitivity after decision threshold adjustment; SPE-pos, specificity after
decision threshold adjustment; N, number of features used to train the model
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Table 6 Classification results
for the DART booster-based
models

Scenario Tuner BACC SEN SPE BACC-pos SEN-pos SPE-pos N

Baseline R 0.80 0.86 0.73 0.81 0.81 0.81 14

B 0.81 0.88 0.74 0.84 0.88 0.80 22

Novel R 0.78 0.84 0.72 0.83 0.80 0.86 110

B 0.8 0.84 0.76 0.83 0.8 0.86 80

Combined R 0.81 0.82 0.80 0.83 0.74 0.92 95

B 0.79 0.82 0.76 0.82 0.77 0.86 60

1BACC, balanced accuracy; SEN, sensitivity; SPE, specificity; BACC-pos, balanced accuracy after decision
threshold adjustment; SEN-pos, sensitivity after decision threshold adjustment; SPE-pos, specificity after
decision threshold adjustment; N, number of features used to train the model

for DART booster as training time increases dramatically
with the number of estimators. The same is true for the sec-
ond round of training, where we didn’t test performance for
every amount n of the most important feature, but tested the
range with a step of 5.

Results

Results based on the GBTree booster are reported in Table 5.
Results for the random search tuning method can be found
in Table 6. Regarding GBTree-trained models, the Bayesian

Fig. 7 Feature importances for models trained in the baseline scenario
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Fig. 8 Feature importances for models trained in the novel scenario

search tuning provided a better performant model in two
of the three scenarios, which is a result that was repeated
by the DART-trained models. The best-performing model
resulted from the combination of the novel feature set and
Bayesian search, achieving a balanced accuracy of 87%
(SEN = 82%, SPE = 92%). This provides a 3 percent-
age point increase over the best performant model in the
baseline scenario (trained using Bayesian search and DART
booster), which achieved BACC of 84% (SEN = 88%, SPE
= 80%). Another notable model was trained in the com-
bined scenario, using theBayesian tuner andGBTree booster,
reaching BACC of 86% (SEN = 80%, SPE = 92%). These
three models are highlighted in the corresponding tables. All
threemodels were trained using the Bayesian tuningmethod.
Regarding the boosters, we see that the models which were
trained on feature sets containing the novel features (novel
and combined scenarios) reached better results when trained
with the GBTree booster with a significant lead over their
DART-trained counterparts (performance lead of 3 and 4
percentage points respectively). While the best performant
baseline model was achieved using the DART booster, its
advantage is only 1 percentage point.

The best-performing model reached its highest BACC
accuracy score while using 43 features, which is roughly
one-sixth of the whole feature set. With the whole featureset,

the same model would reach BACC of only 79%. The mean
and median BACC over the whole range of n both reached a
value of 82%. The BACC vs. number of features plot can be
seen in Fig. 11.

To provide a closer look on the most performant models
from each scenario and booster, their feature importances are
plotted in Figs. 7, 8, and 9. Corresponding ROC curves are
plotted in Fig. 10.

Discussion

Generally, vertical and horizontal movements during hand-
writing are facilitated by distinct anatomical and biome-
chanical processes, allowing for effective task execution
while accommodating variations in speed, pressure, and flu-
ency. Horizontal movement is primarily produced through
wrist actions; specifically, horizontal strokes are generated by
ulnar abductions (outwardmovement) and adduction (inward
movement) of the wrist [3, 32]. This type of movement
allows for smooth progression across the page and facili-
tates the formation of letters along the line of writing. On
the other hand, vertical movement involves more complex,
finer movements controlled largely by the finger flexors and
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Fig. 9 Feature importances for models trained in the combined scenario

extensors [3, 32]. Due to the finger system’smultiple joints, it
demands greater coordination andneuromotor control,which
can reduce movement speed and fluency compared to hori-
zontal strokes. This complexity is associated with increased
neuromotor noise and lower efficiency, potentially contribut-
ing to fatigue over prolonged writing tasks [31, 32]. This
may also explain why several studies report that GD is more
pronounced in vertical movement [22, 23]. However, during
writing, vertical and horizontal movements are performed
simultaneously, involving a trade-off between fluidity and
precision and balancing motor efficiency with biomechan-
ical control. When producing both vertical and horizontal
movements simultaneously, the motor system often sacri-
fices speed for accuracy [3, 32]. This balance is mediated
by a process called motor coordination, which is critical for
maintaining letter structure and legibility. Nevertheless, to
date, the simultaneous execution of vertical and horizontal
movement in children with GD has not been fully explored.

The ability to visualize the trade-off between vertical and
horizontal movements brings new benefits, as it can aid in
interpreting certain manifestations of GD and build intu-
ition in the assessment process. For example, in Fig. 2, we
can see a comparison of polar plots of an intact child and a
child diagnosed with GD. It seems that the intact child was
more comfortable with the nature of the movements required
to properly finish the exercise. The two petals on the plot
roughly correspond to the relatively straight and long parts
of the loop exercise, where it is expected the strokes should
reach a higher velocity. On the other hand, looking at the
plot of the child with GD, we can see the distribution is more
chaotic. While there is a pronounced node around the 45◦
direction, we can also see similar increases in other direc-
tions, including many local maxima. It is notable that the
GD-example plot reaches much lesser values, further sug-
gesting the child was not able to consistently reach higher
velocities and produced similar velocities in the long and
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Fig. 10 ROC curves for the best-performing models for each scenario in each hyperparameter tuning method. Rows contain baseline, novel, and
combined scenarios respectively, while columns show Bayesian search and random search tuning methods, respectively
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Fig. 11 BACC score
dependence on the number of
features included in two of the
final XGBoost models. Both
models were trained with novel
features using the Bayesian
search hyperparameter tuning
method. However, one was
trained using the GBTree
booster (in blue), while the other
was using the DART booster (in
red). Both lines were smoothed
using Gaussian smoothing for
better visual clarity

straight parts of the exercise as well as in the tighter curves.
These differences correspond with the principles of hand-
writing isochrony, which suggests that strokes with longer
trajectories should be carried out to reach higher veloc-
ity [63]. It has been shown that children with developmental
dyslexia and DD violate these principles [64], and features
based on the principles of handwriting isochrony can be used
to differentiate intact children and children with GD [65].

Using the same polar plots, we can observe the progres-
sion of the fractional order derivative as the order increases
from α = 0.2 to α = 1.0 in Figs. 5 and 6 in an intact child and
a child with GD, respectively (α = 0.1 was omitted for spac-
ing reasons, but the respective plots can be seen in Fig. 4).
It seems the plots for the intact child for lower values of α

are relatively smooth, with two dominant nodes roughly in
the directions of the largest movements in the exercise. With
increasing α values, the plot gets more jagged as local max-
ima start to get more pronounced. With α from 0.5 to 0.7 we
can start noticing a new node starting to form roughly at the
305◦ direction.

Perhaps, as the order of the fractional derivation increases
from values 0 close to 1, the output also gradually shifts to
a function resembling the velocity curve. This interpretation
could offer some insight into the gradual shape-shifting of
the plot. With higher α values, the most prominent parts of
the plot will be in the directions, where the child reached the
highest velocities. This would suggest, that the node appear-
ing for α = 0.5 is in part an effect of velocity. Given the
direction of the node, it could correspond to the movement at
the lower part of the loop before connecting to the next one.
It is interesting, that the node in the first quadrant remains
isolated throughout all the α values, while the nodes in the
lower half of the plot eventually blend together. The effect
however seems to be more pronounced in the plot for the
intact child, where the lower nodes are separated for α = 0.7

and well blended for α = 0.9. In contrast, in the plot for the
child diagnosed with GD, we can see that while the nodes are
not as pronounced for higher α values, there are still soft, but
obvious maxima. This might be an indication of a problem
with fluent change of direction of the pen tipmovement in the
later part of the loop, where the child has to slowly go from a
left-down facing direction to a mostly right-facing direction
with fluency and control. The lack of fluency of change of
direction of the pen movement for the child diagnosed with
GD can be also seen in Fig. 2, where it seems the changes in
direction are more obvious and are executed in pronounced
steps, followed by a straighter section.

When looking at the α progression for the child with GD
(see Fig. 6), it is evident right away that the values are overall
smaller when compared to the intact child, which might be
explained by the overall smaller handwriting sample (as can
be seen in Fig. 2). However, if we evaluate the shape alone,
we also see a dominant node in the first quadrant across the
orders, yet, it is much wider and in some α values, tends to
have many local maxima. The width of the nodes, or lack,
thereof, might be an indication of consistency in the exercise
and similarity between the individual loops. As children with
proficient handwriting will produce loops that are all more
similar to each other, the portions of the exercise reaching
the highest velocities should point in the same direction. The
difference in consistency of the loop shape can be observed
in the rendered samples in Fig. 2. Another notable difference
in the GD-child plots, when looking at α > 0.7, is that the
values reached in the bottom half are much lower than the
maximum in the upper half, whereas, in the intact child’s
plots, they seem to be closer. The bottom halves of the two
samples are distinct aswell, theGD-child’s bottomhalf of the
polar plot seems to be covered more uniformly, rather than
with a pronounced node, suggesting inconsistency with the
movement direction. Thismight be interpreted, as while even

123



Cognitive Computation            (2025) 17:13 Page 15 of 19    13 

the GD-child is able to execute motion in the 45◦ direction,
they have problems with the southward motion of the pentip.

As can be noticed in Fig. 4, the loop task consists of
two segments. The first segment is the movement from the
loop origin to the top part of the loop (the turning point),
and we will refer to it as the upward segment (pink line in
Fig. 4). The second segment is the movement from the turn-
ing point to the end of the loop, and we will refer to it as the
downward segment (green line in Fig. 4). Observing polar
plots for intact children indicates that the directional values
of trajectory data visualized can be associated with these
two segments. The upward segment is represented by direc-
tions in the quadrant around 50◦, and the downward segment
represents the quadrant around 260◦. Imagining the ideal
movement during the task performance for an intact child
(except the top part of the loop), the directions on each loop
segment should be around the same degree level. Therefore,
we can claim this representation as an accurate measurement
of the writing directionality. The downward segment should
bemore automatic and effortless, resulting in higher velocity.
With higher velocity, the variability between the movement
directions will increase, and the derivation progress should
stress out this phenomenon. Considering the temporal mem-
ory effect of the FDEs (Caputo’s) operator, the variability
principle should be more visible with the increasing alpha
order of the derivation, confirmed by the observations in
Fig. 5. Therefore, we should analyze this effect separately
in future studies to describe it precisely since the potential of
FDEs can be utilized even more.

The novel features seem to be beneficial to the computer-
aided GD diagnosis when using XGBoost classification
models, as seen in Tables 5 and 6. Comparing the two tables
and considering the BACC and BACC-pos values, it is evi-
dent, that Bayesian search has provided better results in
more scenarios than random search. With exceptions being
BaselineGBTree andCombinedDARTscenarios,where per-
formance leans toward random search, and the Novel DART
scenario, where the highest BACC (adjusted for positive
class) score is tied, but non-adjusted BACC is higher with
Bayesian search.

Except for the baseline scenario using the Bayesian tuner,
DART does not seem to offer obvious improvement in model
performance. Despite the fact, that the hyperparameter tun-
ing algorithms could set all the DART-specific parameters
to zero, effectively transforming it to the GBTree booster,
none of the best DART models chose this tactic. It might
be important to point out, that as the computation time for
DART booster training is significantly longer, we set the
number of estimators lower than in the GBTree models to
roughly match the computational resources. It is possible,
that given unlimited resources, the DART-boosted models
would reach comparable or better results, but such an exper-
iment is beyond the scope of this study.

The model trained using the Novel featureset accom-
plished a 3 percentage point improvement over the baseline-
trained model when considering the BACC score. The fact
that the baseline features carry only the information about
velocity, while the novel features also provide information
in the fractional order derivatives, suggests that featurising
a broader dimensional range could be an important fac-
tor in feature engineering. This is also supported by the
Feature importance plots for both of the most performant
novel-scenario models, where some features appear multiple
times in the top 10 feature list, but with a different deriva-
tive order and quartile, e.g., the features CentroidY (α =
{0.7, 0.9, 0.5, 0.2}, in that order) for the bayesian trained
GBTree model (Fig. 8). We can also see the feature repeat-
ing throughout the feature importance plots of other trained
models.

While the combined scenario did not provide the best per-
formant model (2 percentage point improvement in BACC
over baseline), observing the feature importance rating of
the models trained on the combined datasets, could provide
some insight into how the features impact the overall model.
From Fig. 9 we can see that the GBTree model only selected
3 features from the baseline dataset and only two novel fea-
tures that were calculated from an integer-order derivation,
which suggests that a combination of fractional order and
full order derivatives is beneficial to the overall performance
of the model. This is further supported by the feature impor-
tance list of the DART-trained model, which selected only
novel features in the 10 most important features, but we can
still see, that full-order derivative features are present (2 out
of 10). For both models, we can see that the novel features
are represented in greater numbers in the plots.

The method of training the models in two rounds was
beneficial across the board. Examples for two models from
the GBTree and DART-based models can be seen in Fig. 11.
In the GBTree example is a clearly visible trend, where the
BACC score grows until peaking between 40 and 60 features,
after which it slowly decreases. As the BACC plot against the
number of features has a noisy character, the performance of
the model trained with the full featureset lies in a local min-
imum (BACC = 79%) and thus comparing it with the best
result might be misleading. However, the mean and median
BACC score of the model is 82%, so only supplying a sub-
set of the features provided a 5 percentage point increase in
accuracy. A similar effect can be seen in the DART exam-
ple, however, it is notable, that this model reaches its peak
performance later and the decrease in BACC with a grow-
ing number of features is not as notable. Given the increase
in performance when only using a subset of the featureset,
we conclude that this technique might prove beneficial and
should be tested with more datasets of various sizes.

While the resulting balanced accuracy of our best-
performing model is 87%, which might appear lagging

123



   13 Page 16 of 19 Cognitive Computation            (2025) 17:13 

behind the current state-of-the-art approaches, it is impor-
tant to realize, that we only trained our models with access to
limited information regarding the subjects’ handwriting abil-
ity. Firstly, we only used data from one single graphomotor
exercise, rather than from a barrage of exercises or hand-
writing samples. Secondly, we limited the dimensionality of
features to only include kinematic features based on hand-
writing velocity. Furthermore, we show that features based
on fractional-order calculus improve the performance of
classifier-based approaches to automatedhandwriting assess-
ment and their employment in more complex systems should
be considered.

Conclusion

This study had several goals related to the field of featuri-
sation and objective assessment of handwriting deficiencies
in children. First and foremost, we proposed novel features
based on fractional calculus and polar plots, extracted from
the position data of online handwriting. These features allow
for additional information availability to an automated clas-
sifier with the potential of human interpretability thanks to
the possibility of easy visualization using polar plots.

We validated the novel features in a barrage of machine
learning scenarios, which allowed us to test the performance
of various XGBboost training methods, namely comparing
the GBTree and DART boosters, and Bayesian and random
search hyperparameter tuning methods. Lastly, after hyper-
parameter tuning, we trained the models with a subset of the
featureset, using only N most important features, iterating N
in the range from 1 to the total amount of features. In the end,
novel features provided a balanced accuracy of 87% (SEN
= 82%, SPE = 92%), while using the GBTree booster and
Bayesian search tuning method, accomplishing 3 percentage
point increase of BACC score compared to a model trained
using conventional features. The model reached its peak per-
formance when using only 43 out of 250 newly proposed
features, where that peak BACC was 5 percentage points
above themean andmedian accuracy and 8 percentage points
above the accuracy reached with the full featureset, showing
that XGBoost can benefit from feature selection methods.
However, this improvement comes at the cost of increased
model complexity, requiring 43 features compared to just
13 in the best baseline configuration. This trade-off between
performance and complexity underscores the need for further
exploration into optimizing both feature selection and model
simplicity.

The study has several identified limitations. To our best
knowledge, this is the first study exploring the usage of
FDE in combination with polar plots, thus more analysis is
required to enable a more thorough understanding of their
viability for handwriting assessment. More specifically, our

case is limited to only one handwriting exercise we only
used velocity-based features, and the α step of 0.1 is not
sensitive enough. Also, only Caputo’s approach to FDEs
was tested, and others should be explored (e.g., Baleanu,
Riemann-Liouville). The size of the dataset the study was
conducted on can also be considered a limitation. Moreover,
the target variable in training was obtained as a combina-
tion of HPSQ-C and expert assessment provided by only one
rater. To overcome this, further studies should be conducted
on different datasets, not limited to children’s handwriting
(e.g., Parkinson’s disease handwriting assessment). Finally,
while we tested more variants of the XGBoost ML approach,
testing more models is also desirable in future studies.
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39. LazarevićM. Further results on fractional order control of amecha-
tronic system. Scientific Technical Review, ISSN. 2013;206.

40. Uchaikin VV. Fractional derivatives for physicists and engineers
vol. 2. Springer, ???. 2013.

41. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y. A new collec-
tion of real world applications of fractional calculus in science and
engineering. Communications in Nonlinear Science and Numer-
ical Simulation. 2018;64:213–31. https://doi.org/10.1016/j.cnsns.
2018.04.019.

42. Persechino A. An introduction to fractional calculus. Advanced
Electromagnetics. 2020;9(1):19–30.

43. JoshiM, Bhosale S, VyawahareVA.A survey of fractional calculus
applications in artificial neural networks. Artif Intell Rev. 2023;1–
54.

44. Zuñiga-Aguilar CJ, Gomez-Aguilar J, Franc S, Charpentier G,
Doron M, Benhamou P, Romero-ugalde H. Blood glucose predic-
tion with a fractional order neural network. Diabetes Technol Ther.
2020;22:82–82.

45. Nagar S, Kumar A. Orthogonal features based EEG signals
denoising using fractional and compressed one-dimensional CNN
autoencoder. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2474–
85.

46. Arshad S, Baleanu D, Bu W, Tang Y. Effects of HIV infec-
tion on cd4+ t-cell population based on a fractional-order model.
Adv Difference Equ. 2017;2017(1):92. https://doi.org/10.1186/
s13662-017-1143-0.

47. Pinto CMA, Machado JAT. Fractional model for malaria trans-
mission under control strategies. Computers & Mathematics
with Applications. 2013;66(5):908–16. https://doi.org/10.1016/j.
camwa.2012.11.017. Fractional Differentiation and its Applica-
tions.

48. Herrera-Alcántara O, Castelán-Aguilar JR. Fractional gra-
dient optimizers for PyTorch: enhancing GAN and BERT.
Fractal and Fractional. 2023;7(7). https://doi.org/10.3390/
fractalfract7070500.

49. Altan G, Alkan S, Baleanu D. A novel fractional operator appli-
cation for neural networks using proportional Caputo derivative.
Neural Comput Appl. 2023;35(4):3101–14.

50. Rosenblum S, Gafni-Lachter L. Handwriting proficiency screen-
ing questionnaire for children (HPSQ-C): development, reliability,
and validity. The American Journal of Occupational Therapy.
2015;69(3):6903220030–169032200309.
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