Publication detail
Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films
Danchuk, V. Shatalov, M. Zinigrad, M. Kossenko, A. Brider, T. Le, L. Johnson, D. Strzhemechny, YM. Musin, A
Original Title
Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films
Type
journal article in Web of Science
Language
English
Original Abstract
The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures-nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1-x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 & Aring; was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8-12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4-11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.
Keywords
nanophase; thin films; stabilization of the cubic phase of zirconia; magnetron co-sputtering
Authors
Danchuk, V.; Shatalov, M.; Zinigrad, M.; Kossenko, A.; Brider, T.; Le, L.; Johnson, D.; Strzhemechny, YM.; Musin, A
Released
1. 4. 2024
Publisher
MDPI
Location
BASEL
ISBN
2079-4991
Periodical
Nanomaterials
Year of study
14
Number
8
State
Swiss Confederation
Pages count
16
URL
BibTex
@article{BUT188823,
author="Danchuk, V. and Shatalov, M. and Zinigrad, M. and Kossenko, A. and Brider, T. and Le, L. and Johnson, D. and Strzhemechny, YM. and Musin, A",
title="Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films",
journal="Nanomaterials",
year="2024",
volume="14",
number="8",
pages="16",
doi="10.3390/nano14080708",
issn="2079-4991",
url="https://www.mdpi.com/2079-4991/14/8/708"
}