Publication detail

Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films

Danchuk, V. Shatalov, M. Zinigrad, M. Kossenko, A. Brider, T. Le, L. Johnson, D. Strzhemechny, YM. Musin, A

Original Title

Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films

Type

journal article in Web of Science

Language

English

Original Abstract

The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures-nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1-x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 & Aring; was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8-12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4-11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.

Keywords

nanophase; thin films; stabilization of the cubic phase of zirconia; magnetron co-sputtering

Authors

Danchuk, V.; Shatalov, M.; Zinigrad, M.; Kossenko, A.; Brider, T.; Le, L.; Johnson, D.; Strzhemechny, YM.; Musin, A

Released

1. 4. 2024

Publisher

MDPI

Location

BASEL

ISBN

2079-4991

Periodical

Nanomaterials

Year of study

14

Number

8

State

Swiss Confederation

Pages count

16

URL

BibTex

@article{BUT188823,
  author="Danchuk, V. and Shatalov, M. and Zinigrad, M. and Kossenko, A. and Brider, T. and Le, L. and Johnson, D. and Strzhemechny, YM. and Musin, A",
  title="Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films",
  journal="Nanomaterials",
  year="2024",
  volume="14",
  number="8",
  pages="16",
  doi="10.3390/nano14080708",
  issn="2079-4991",
  url="https://www.mdpi.com/2079-4991/14/8/708"
}