Publication detail
Positive periodic solutions to super-linear second-order ODEs
ŠREMR, J.
Original Title
Positive periodic solutions to super-linear second-order ODEs
Type
journal article in Web of Science
Language
English
Original Abstract
We study the existence and uniqueness of a positive solution to the problemu ''=p(t)u+q(t,u)u+f(t);u(0)=u(omega),u '(0)=u '(omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u<^>{\prime \prime }} = p(t)u + q(t,u)u + f(t);\,\,\,\,\,u(0) = u(\omega ),\,\,\,{u<^>\prime }(0) = {u<^>\prime }(\omega )$$\end{document}with a super-linear nonlinearity and a nontrivial forcing term f. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.
Keywords
second-order differential equation; super-linearity; positive solution; existence; uniqueness
Authors
ŠREMR, J.
Released
1. 3. 2025
Publisher
SPRINGER HEIDELBERG
Location
HEIDELBERG
ISBN
0011-4642
Periodical
Czechoslovak Mathematical Journal
Year of study
75
Number
1
State
Czech Republic
Pages from
257
Pages to
275
Pages count
19
URL
BibTex
@article{BUT197721,
author="Jiří {Šremr}",
title="Positive periodic solutions to super-linear second-order ODEs",
journal="Czechoslovak Mathematical Journal",
year="2025",
volume="75",
number="1",
pages="257--275",
doi="10.21136/CMJ.2024.0128-23",
issn="0011-4642",
url="https://link.springer.com/article/10.21136/CMJ.2024.0128-23"
}