Result with impact on practice detail
A novel well-defined linear poly(methacrylic acid) macromonomers for biomaterial applications: The synthesis and characterization
Vojtová, L., Koberstein, J. T., Turro, N. T.
Original Title
A novel well-defined linear poly(methacrylic acid) macromonomers for biomaterial applications: The synthesis and characterization
English Title
A novel well-defined linear poly(methacrylic acid) macromonomers for biomaterial applications: The synthesis and characterization
Type
Audiovisual work
Original Abstract
Low molecular weight alpha-allyl terminated poly(tert-butyl methacrylate) (poly(t-BMA)) macromonomers with narrow polydispersities (Mw/Mn = 1.16) were synthesized via controlled atom transfer radical polymerization (ATRP) using Cu(I)Br/hexamethyltriethylenetetraamine catalyst system in conjunction with an allyl-2-bromoisobutyrate as the functional initiator. The polymerizations exhibited a linear increase of molecular weight in direct proportion to the monomer conversion and a first-order kinetics with respect to monomer concentration (GPC and GC analysis). No significant difference was found between using polar or non-polar solvents (tetrahydrofuran or benzene, respectively). Optimization of reaction conditions with a view to obtain the highest degree of active terminal bromine is discussed. Quenching the ATRP reaction with allyltributyltin afforded alpha,omega-allyl terminated poly(t-BMA) macromonomers by replacing of the terminal bromine for omega-allyl functional group. Successful synthetic steps were confirmed by 1H NMR, FT-IR and MALDI-TOF analyses. Well-defined alpha,omega-allyl terminated poly(methacrylic acid) macromonomers were obtained by deprotection of tert-butyl group from alpha,omega-allyl terminated poly(t-BMA) macromonomers, which are candidates for further polymerization to form end-linked hydrogels useful in biomaterial/tissue engineering applications.
English abstract
Low molecular weight alpha-allyl terminated poly(tert-butyl methacrylate) (poly(t-BMA)) macromonomers with narrow polydispersities (Mw/Mn = 1.16) were synthesized via controlled atom transfer radical polymerization (ATRP) using Cu(I)Br/hexamethyltriethylenetetraamine catalyst system in conjunction with an allyl-2-bromoisobutyrate as the functional initiator. The polymerizations exhibited a linear increase of molecular weight in direct proportion to the monomer conversion and a first-order kinetics with respect to monomer concentration (GPC and GC analysis). No significant difference was found between using polar or non-polar solvents (tetrahydrofuran or benzene, respectively). Optimization of reaction conditions with a view to obtain the highest degree of active terminal bromine is discussed. Quenching the ATRP reaction with allyltributyltin afforded alpha,omega-allyl terminated poly(t-BMA) macromonomers by replacing of the terminal bromine for omega-allyl functional group. Successful synthetic steps were confirmed by 1H NMR, FT-IR and MALDI-TOF analyses. Well-defined alpha,omega-allyl terminated poly(methacrylic acid) macromonomers were obtained by deprotection of tert-butyl group from alpha,omega-allyl terminated poly(t-BMA) macromonomers, which are candidates for further polymerization to form end-linked hydrogels useful in biomaterial/tissue engineering applications.
Keywords
macromonomers, biomaterials
Key words in English
macromonomers, biomaterials
Authors
Vojtová, L., Koberstein, J. T., Turro, N. T.
Released
10.09.2002
Publisher
Brno University of Technology
Location
Brno
ISBN
0009-2770
Book
Chem. Listy, Symposia 2002
Edition
1
Pages from
S227
Pages count
5