Publication result detail

Pin-Hole Discharge Creation in Na2SO4 Water Solutions

HLAVATÁ, L.; SERBANESCU, R.; HLOCHOVÁ, L.; KOZÁKOVÁ, Z.; KRČMA, F.

Original Title

Pin-Hole Discharge Creation in Na2SO4 Water Solutions

English Title

Pin-Hole Discharge Creation in Na2SO4 Water Solutions

Type

Abstract

Original Abstract

This work deals with the diaphragm discharge generated in water solutions containing Na2SO4 as a supporting electrolyte. The solution conductivity was varied in the range of 270-750 microS/cm. The batch plasma reactor with volume of 100 ml was divided into two electrode spaces by the Shapal-M ceramics dielectric barrier with a pin-hole (diameter of 0.6 mm). Three variable barrier thicknesses (0.3; 0.7 and 1.5 mm) and non-pulsed DC voltage up to 2 kV were used for the discharge creation. Each of the current-voltage characteristic can be divided into three parts: electrolysis, bubble formation and discharge operation. The experimental results showed that the discharge ignition moment in the pin-hole was significantly dependent on the dielectric diaphragm thickness. Breakdown voltage increases with the increase of the dielectric barrier thickness.

English abstract

This work deals with the diaphragm discharge generated in water solutions containing Na2SO4 as a supporting electrolyte. The solution conductivity was varied in the range of 270-750 microS/cm. The batch plasma reactor with volume of 100 ml was divided into two electrode spaces by the Shapal-M ceramics dielectric barrier with a pin-hole (diameter of 0.6 mm). Three variable barrier thicknesses (0.3; 0.7 and 1.5 mm) and non-pulsed DC voltage up to 2 kV were used for the discharge creation. Each of the current-voltage characteristic can be divided into three parts: electrolysis, bubble formation and discharge operation. The experimental results showed that the discharge ignition moment in the pin-hole was significantly dependent on the dielectric diaphragm thickness. Breakdown voltage increases with the increase of the dielectric barrier thickness.

Keywords

Diaphragm discharge, current-voltage characteristics, discharge breakdown

Key words in English

Diaphragm discharge, current-voltage characteristics, discharge breakdown

Authors

HLAVATÁ, L.; SERBANESCU, R.; HLOCHOVÁ, L.; KOZÁKOVÁ, Z.; KRČMA, F.

RIV year

2013

Released

18.06.2012

Location

Praha

ISBN

1805-7594

Periodical

Symposium on Plasma Physics and Technology

Volume

1

Number

1

State

Czech Republic

Pages from

42

Pages to

42

Pages count

1

BibTex

@misc{BUT93305,
  author="HLAVATÁ, L. and SERBANESCU, R. and HLOCHOVÁ, L. and KOZÁKOVÁ, Z. and KRČMA, F.",
  title="Pin-Hole Discharge Creation in Na2SO4 Water Solutions",
  year="2012",
  journal="Symposium on Plasma Physics and Technology",
  volume="1",
  number="1",
  pages="42--42",
  address="Praha",
  issn="1805-7594",
  note="Abstract"
}