Detail publikačního výsledku
A digital 3D Jordan-Brouwer separation theorem
ŠLAPAL, J.
Original Title
A digital 3D Jordan-Brouwer separation theorem
English Title
A digital 3D Jordan-Brouwer separation theorem
Type
WoS Article
Original Abstract
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
English abstract
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Keywords
Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.
Key words in English
Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.
Authors
ŠLAPAL, J.
RIV year
2025
Released
25.10.2024
Publisher
Ovidius University Constanta
Location
Constanta
ISBN
1224-1784
Periodical
Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica
Volume
32
Number
3
State
Romania
Pages from
161
Pages to
172
Pages count
10
URL
Full text in the Digital Library
BibTex
@article{BUT190036,
author="Josef {Šlapal}",
title="A digital 3D Jordan-Brouwer separation theorem",
journal="Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica",
year="2024",
volume="32",
number="3",
pages="161--172",
doi="10.2478/auom-2024-0034",
issn="1224-1784",
url="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf"
}
Documents