Detail publikačního výsledku
A digital 3D Jordan-Brouwer separation theorem
ŠLAPAL, J.
Originální název
A digital 3D Jordan-Brouwer separation theorem
Anglický název
A digital 3D Jordan-Brouwer separation theorem
Druh
Článek WoS
Originální abstrakt
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Anglický abstrakt
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Klíčová slova
Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.
Klíčová slova v angličtině
Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.
Autoři
ŠLAPAL, J.
Rok RIV
2025
Vydáno
25.10.2024
Nakladatel
Ovidius University Constanta
Místo
Constanta
ISSN
1224-1784
Periodikum
Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica
Svazek
32
Číslo
3
Stát
Rumunsko
Strany od
161
Strany do
172
Strany počet
10
URL
Plný text v Digitální knihovně
BibTex
@article{BUT190036,
author="Josef {Šlapal}",
title="A digital 3D Jordan-Brouwer separation theorem",
journal="Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica",
year="2024",
volume="32",
number="3",
pages="161--172",
doi="10.2478/auom-2024-0034",
issn="1224-1784",
url="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf"
}
Dokumenty