Detail publikačního výsledku

A digital 3D Jordan-Brouwer separation theorem

ŠLAPAL, J.

Originální název

A digital 3D Jordan-Brouwer separation theorem

Anglický název

A digital 3D Jordan-Brouwer separation theorem

Druh

Článek WoS

Originální abstrakt

We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky

Anglický abstrakt

We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky

Klíčová slova

Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.

Klíčová slova v angličtině

Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.

Autoři

ŠLAPAL, J.

Rok RIV

2025

Vydáno

25.10.2024

Nakladatel

Ovidius University Constanta

Místo

Constanta

ISSN

1224-1784

Periodikum

Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica

Svazek

32

Číslo

3

Stát

Rumunsko

Strany od

161

Strany do

172

Strany počet

10

URL

Plný text v Digitální knihovně

BibTex

@article{BUT190036,
  author="Josef {Šlapal}",
  title="A digital 3D Jordan-Brouwer separation theorem",
  journal="Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica",
  year="2024",
  volume="32",
  number="3",
  pages="161--172",
  doi="10.2478/auom-2024-0034",
  issn="1224-1784",
  url="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf"
}

Dokumenty