Detail publikace

Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes

Originální název

Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes

Anglický název

Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes

Jazyk

en

Originální abstrakt

The aim of this study was to explore the influence of ethylene glycol in a wide range of polymerization degree, i.e. from monomer (EG) up to polyethylene glycol (PEG) with molecular weight of about 35,000, on properties of alkali-activated slag mortars. Changes in molecular weight and dose of all tested glycols had only minor effect on compressive strength, while drying shrinkage was significantly affected by both these factors. EG had negligible impact on drying shrinkage, but other tested glycols reduced it significantly with PEG2000 and PEG10000 being the most effective. Such different shrinkage behavior was attributed to the changes in surface tension and pore structure. All tested glycols reduced the total heat released during the hydration and interestingly modified the heat flow depending on their molecular weight.

Anglický abstrakt

The aim of this study was to explore the influence of ethylene glycol in a wide range of polymerization degree, i.e. from monomer (EG) up to polyethylene glycol (PEG) with molecular weight of about 35,000, on properties of alkali-activated slag mortars. Changes in molecular weight and dose of all tested glycols had only minor effect on compressive strength, while drying shrinkage was significantly affected by both these factors. EG had negligible impact on drying shrinkage, but other tested glycols reduced it significantly with PEG2000 and PEG10000 being the most effective. Such different shrinkage behavior was attributed to the changes in surface tension and pore structure. All tested glycols reduced the total heat released during the hydration and interestingly modified the heat flow depending on their molecular weight.

Odpovědnost: Ing. Jan Brada