Detail publikačního výsledku
Polyhedral digital Jordan surfaces
ŠLAPAL, J.
Originální název
Polyhedral digital Jordan surfaces
Anglický název
Polyhedral digital Jordan surfaces
Druh
Článek WoS
Originální abstrakt
A pair of adjacencies in the digital space Z^3 for every positive integer is introduced. The adjacencies are finer than the 6-adjacency and coarser than the 26-adjacency, and the connectedness provided by them for recognition of digital Jordan surfaces is used. The surfaces are defined to be boundary surfaces of the digital polyhedra that can be face-to-face tiled with certain digital cubes, triangular prisms, and tetrahedra.
Anglický abstrakt
A pair of adjacencies in the digital space Z^3 for every positive integer is introduced. The adjacencies are finer than the 6-adjacency and coarser than the 26-adjacency, and the connectedness provided by them for recognition of digital Jordan surfaces is used. The surfaces are defined to be boundary surfaces of the digital polyhedra that can be face-to-face tiled with certain digital cubes, triangular prisms, and tetrahedra.
Klíčová slova
adjacency; simple graph; connectedness; 3D face-to-face tiling; digital space; digital Jordan surface
Klíčová slova v angličtině
adjacency; simple graph; connectedness; 3D face-to-face tiling; digital space; digital Jordan surface
Autoři
ŠLAPAL, J.
Vydáno
17.03.2025
Nakladatel
Shahin Digital Publisher
Místo
Pakistán
ISSN
2664-2557
Periodikum
Discrete Mathematics Letters
Svazek
15
Číslo
1
Stát
Pákistánská islámská republika
Strany od
46
Strany do
51
Strany počet
6
URL
BibTex
@article{BUT197835,
author="Josef {Šlapal}",
title="Polyhedral digital Jordan surfaces",
journal="Discrete Mathematics Letters",
year="2025",
volume="15",
number="1",
pages="46--51",
doi="10.47443/dml.2024.222",
url="https://www.dmlett.com/archive/v15/DML25_v15_pp46-51.pdf"
}