Detail publikačního výsledku

Polyhedral digital Jordan surfaces

ŠLAPAL, J.

Originální název

Polyhedral digital Jordan surfaces

Anglický název

Polyhedral digital Jordan surfaces

Druh

Článek WoS

Originální abstrakt

A pair of adjacencies in the digital space Z^3 for every positive integer is introduced. The adjacencies are finer than the 6-adjacency and coarser than the 26-adjacency, and the connectedness provided by them for recognition of digital Jordan surfaces is used. The surfaces are defined to be boundary surfaces of the digital polyhedra that can be face-to-face tiled with certain digital cubes, triangular prisms, and tetrahedra.

Anglický abstrakt

A pair of adjacencies in the digital space Z^3 for every positive integer is introduced. The adjacencies are finer than the 6-adjacency and coarser than the 26-adjacency, and the connectedness provided by them for recognition of digital Jordan surfaces is used. The surfaces are defined to be boundary surfaces of the digital polyhedra that can be face-to-face tiled with certain digital cubes, triangular prisms, and tetrahedra.

Klíčová slova

adjacency; simple graph; connectedness; 3D face-to-face tiling; digital space; digital Jordan surface

Klíčová slova v angličtině

adjacency; simple graph; connectedness; 3D face-to-face tiling; digital space; digital Jordan surface

Autoři

ŠLAPAL, J.

Vydáno

17.03.2025

Nakladatel

Shahin Digital Publisher

Místo

Pakistán

ISSN

2664-2557

Periodikum

Discrete Mathematics Letters

Svazek

15

Číslo

1

Stát

Pákistánská islámská republika

Strany od

46

Strany do

51

Strany počet

6

URL

BibTex

@article{BUT197835,
  author="Josef {Šlapal}",
  title="Polyhedral digital Jordan surfaces",
  journal="Discrete Mathematics Letters",
  year="2025",
  volume="15",
  number="1",
  pages="46--51",
  doi="10.47443/dml.2024.222",
  url="https://www.dmlett.com/archive/v15/DML25_v15_pp46-51.pdf"
}