Detail publikačního výsledku

Nanometer-scale interface instability in silicon oxide/polymer sandwich structures detected after two years

BRÁNECKÝ, M.; ROMANENKO, O.; ABOUALIGALEDARI, N.; PLICHTA, T.; NOVÁK, J.; MACKOVÁ, A.; ČECH, V.

Originální název

Nanometer-scale interface instability in silicon oxide/polymer sandwich structures detected after two years

Anglický název

Nanometer-scale interface instability in silicon oxide/polymer sandwich structures detected after two years

Druh

Článek WoS

Originální abstrakt

Nonthermal plasma-deposited glassy silica is often used as a gas barrier film to protect polymer material in many applications. This study revealed that glassy silica is a slightly porous material (3 vol.%) with small pores (2.5 nm) formed during thin film deposition. The infrared spectrum shows that the as-deposited plasma silica contains gaseous carbon dioxide, which is likely encapsulated in the pores. It can be assumed that these CO2 molecules diffuse from the silica layer through the silicon oxide/polymer interface into the protected polymer material. The low crosslinked polymer material is then locally oxidized by CO2 , which changes its chemical and physical properties. This means that the silicon oxide/polymer interface gradually moves into the polymer material over time. CO2 diffusion is therefore considered responsible for a shift of the silicon oxide/polymer interface by 30 – 35 nm after 27 months.

Anglický abstrakt

Nonthermal plasma-deposited glassy silica is often used as a gas barrier film to protect polymer material in many applications. This study revealed that glassy silica is a slightly porous material (3 vol.%) with small pores (2.5 nm) formed during thin film deposition. The infrared spectrum shows that the as-deposited plasma silica contains gaseous carbon dioxide, which is likely encapsulated in the pores. It can be assumed that these CO2 molecules diffuse from the silica layer through the silicon oxide/polymer interface into the protected polymer material. The low crosslinked polymer material is then locally oxidized by CO2 , which changes its chemical and physical properties. This means that the silicon oxide/polymer interface gradually moves into the polymer material over time. CO2 diffusion is therefore considered responsible for a shift of the silicon oxide/polymer interface by 30 – 35 nm after 27 months.

Klíčová slova

plasma-enhanced chemical vapor deposition (PECVD); interface; porosity; diffusion; silica; polymer; carbon dioxide

Klíčová slova v angličtině

plasma-enhanced chemical vapor deposition (PECVD); interface; porosity; diffusion; silica; polymer; carbon dioxide

Autoři

BRÁNECKÝ, M.; ROMANENKO, O.; ABOUALIGALEDARI, N.; PLICHTA, T.; NOVÁK, J.; MACKOVÁ, A.; ČECH, V.

Vydáno

22.04.2025

Nakladatel

Elsevier

ISSN

0254-0584

Periodikum

MATERIALS CHEMISTRY AND PHYSICS

Svazek

341

Číslo

130935

Stát

Švýcarská konfederace

Strany od

1

Strany do

9

Strany počet

9

URL

Plný text v Digitální knihovně

BibTex

@article{BUT198384,
  author="Martin {Bránecký} and Oleksandr {Romanenko} and Naghmeh {Aboualigaledari} and Tomáš {Plichta} and Jiří {Novák} and Anna {Macková} and Vladimír {Čech}",
  title="Nanometer-scale interface instability in silicon oxide/polymer sandwich structures detected after two years",
  journal="MATERIALS CHEMISTRY AND PHYSICS",
  year="2025",
  volume="341",
  number="130935",
  pages="1--9",
  doi="10.1016/j.matchemphys.2025.130935",
  issn="0254-0584",
  url="https://www.sciencedirect.com/science/article/pii/S0254058425005814"
}