Detail publikace
Prediction of E.U. sustainable development indicators based on fuzzy description and similarity
SCHÜLLER, D. DOUBRAVSKÝ, K.
Originální název
Prediction of E.U. sustainable development indicators based on fuzzy description and similarity
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
A sustainable economy is a complex issue related to economic, social and environmental areas. For European Union (E.U.) countries, it is closely linked to the issues of sustainable industry, infrastructure and innovation in R&D. Thus, the article is specifically focused on identifiers of Sustainable Development Goal 9 (S.D.G. 9) created by E.U. To meet the main targets based on sustainable development and The European Green Deal strategy, it is necessary to have an idea of the possible future development of the S.D.G. 9 indicators. The main aim of this article is to create a semi-deep prediction model using cluster analysis and fuzzy approach. The contribution of this article is the use of a fuzzy approach to create a multivariate prediction model that allows to circumvent the limitations of classical regression analysis. The E.U. countries were divided into five clusters. A semi-deep prediction model was created for each cluster using fuzzy approach.
Klíčová slova
Fuzzy description of time series; fuzzy similarity; sustainable industry; infrastructure and innovation; European Union
Autoři
SCHÜLLER, D.; DOUBRAVSKÝ, K.
Vydáno
17. 5. 2023
Nakladatel
Taylor & Francis
Místo
London
ISSN
1848-9664
Periodikum
Economic Research-Ekonomska Istrazivanja
Ročník
36
Číslo
3
Stát
Chorvatská republika
Strany od
1
Strany do
19
Strany počet
19
URL
Plný text v Digitální knihovně
BibTex
@article{BUT183525,
author="David {Schüller} and Karel {Doubravský}",
title="Prediction of E.U. sustainable development indicators based on fuzzy description and similarity",
journal="Economic Research-Ekonomska Istrazivanja",
year="2023",
volume="36",
number="3",
pages="1--19",
doi="10.1080/1331677X.2023.2190399",
issn="1848-9664",
url="https://www.tandfonline.com/doi/full/10.1080/1331677X.2023.2190399"
}