Detail publikace

Image demosaicing using Deep Image Prior

BALUŠÍK, P.

Originální název

Image demosaicing using Deep Image Prior

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

The paper focuses on the problem of image demosaicing using the deep image prior. The deep image prior (DIP) is an uncommon concept that uses a generative neural network which, however, utilizes only the degraded image as the input for training. A novel method for image demosaicing is proposed, based on DIP, and it is compared with common demosaicing methods. In terms of the objective PSNR and SSIM values, the proposed method proved to be comparable with a widely used Malvar’s demosaicing method. Nevertheless, subjectively, DIP produces demosaiced images comparable with the superior Menon’s algorithm. Unfortunately, the proposed method turned out to be computationally immensely challenging.

Klíčová slova

demosaicing, debayerization, color filter array, deep image prior

Autoři

BALUŠÍK, P.

Vydáno

25. 4. 2023

Nakladatel

Brno University of Technology, Faculty of Electrical Engineering and Communication

Místo

Brno

ISBN

978-80-214-6154-3

Kniha

Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers

Edice

1

ISSN

2788-1334

Periodikum

Proceedings II of the Conference STUDENT EEICT

Stát

Česká republika

Strany od

17

Strany do

20

Strany počet

4

URL

BibTex

@inproceedings{BUT184280,
  author="Peter {Balušík}",
  title="Image demosaicing using Deep Image Prior",
  booktitle="Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers",
  year="2023",
  series="1",
  journal="Proceedings II of the Conference STUDENT EEICT",
  pages="17--20",
  publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication",
  address="Brno",
  doi="10.13164/eeict.2023.17",
  isbn="978-80-214-6154-3",
  issn="2788-1334",
  url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf"
}