Detail publikace
SoftCTC-semi-supervised learning for text recognition using soft pseudo-labels
KIŠŠ, M. HRADIŠ, M. BENEŠ, K. BUCHAL, P. KULA, M.
Originální název
SoftCTC-semi-supervised learning for text recognition using soft pseudo-labels
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper explores semi-supervised training for sequence tasks, such as optical character recognition or automatic speech recognition. We propose a novel loss function-SoftCTC-which is an extension of CTC allowing to consider multiple transcription variants at the same time. This allows to omit the confidence-based filtering step which is otherwise a crucial component of pseudo-labeling approaches to semi-supervised learning. We demonstrate the effectiveness of our method on a challenging handwriting recognition task and conclude that SoftCTC matches the performance of a finely tuned filtering-based pipeline. We also evaluated SoftCTC in terms of computational efficiency, concluding that it is significantly more efficient than a nave CTC-based approach for training on multiple transcription variants, and we make our GPU implementation public.
Klíčová slova
CTC, SoftCTC, OCR, Text recognition, Confusion networks
Autoři
KIŠŠ, M.; HRADIŠ, M.; BENEŠ, K.; BUCHAL, P.; KULA, M.
Vydáno
6. 10. 2023
ISSN
1433-2825
Periodikum
International Journal on Document Analysis and Recognition
Ročník
2024
Číslo
27
Stát
Spolková republika Německo
Strany od
177
Strany do
193
Strany počet
17
URL
BibTex
@article{BUT185136,
author="Martin {Kišš} and Michal {Hradiš} and Karel {Beneš} and Petr {Buchal} and Michal {Kula}",
title="SoftCTC-semi-supervised learning for text recognition using soft pseudo-labels",
journal="International Journal on Document Analysis and Recognition",
year="2023",
volume="2024",
number="27",
pages="177--193",
doi="10.1007/s10032-023-00452-9",
issn="1433-2825",
url="https://link.springer.com/article/10.1007/s10032-023-00452-9"
}