Detail publikace

Planar Choquard equations with critical exponential reaction and Neumann boundary condition

RAWAT, S. RADULESCU, V. SREENADH, K.

Originální název

Planar Choquard equations with critical exponential reaction and Neumann boundary condition

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We study the existence of positive weak solutions for the following problem: (Formula presented.) where (Formula presented.) is a bounded domain in (Formula presented.) with smooth boundary, (Formula presented.) is a bounded measurable function on (Formula presented.), (Formula presented.) is nonnegative real number, (Formula presented.) is the unit outer normal to (Formula presented.), (Formula presented.), and (Formula presented.). The functions (Formula presented.) and (Formula presented.) have critical exponential growth, while (Formula presented.) and (Formula presented.) are their primitives. The proofs combine the constrained minimization method with energy methods and topological tools.

Klíčová slova

Cherrier inequality; Hardy–Littlewood–Sobolev inequality; Moser–Trudinger inequality; Nehari manifold; Neumann problem

Autoři

RAWAT, S.; RADULESCU, V.; SREENADH, K.

Vydáno

26. 10. 2024

Nakladatel

Wiley

ISSN

1522-2616

Periodikum

Mathematische Nachrichten

Ročník

297

Číslo

10

Stát

Spolková republika Německo

Strany od

3847

Strany do

3869

Strany počet

23

URL

Plný text v Digitální knihovně

BibTex

@article{BUT193714,
  author="Sushmita {Rawat} and Vicentiu {Radulescu} and Konijeti {Sreenadh}",
  title="Planar Choquard equations with critical exponential reaction and Neumann boundary condition",
  journal="Mathematische Nachrichten",
  year="2024",
  volume="297",
  number="10",
  pages="3847--3869",
  doi="10.1002/mana.202400095",
  issn="1522-2616",
  url="https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202400095"
}