Detail publikace
Planar Choquard equations with critical exponential reaction and Neumann boundary condition
RAWAT, S. RADULESCU, V. SREENADH, K.
Originální název
Planar Choquard equations with critical exponential reaction and Neumann boundary condition
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We study the existence of positive weak solutions for the following problem: (Formula presented.) where (Formula presented.) is a bounded domain in (Formula presented.) with smooth boundary, (Formula presented.) is a bounded measurable function on (Formula presented.), (Formula presented.) is nonnegative real number, (Formula presented.) is the unit outer normal to (Formula presented.), (Formula presented.), and (Formula presented.). The functions (Formula presented.) and (Formula presented.) have critical exponential growth, while (Formula presented.) and (Formula presented.) are their primitives. The proofs combine the constrained minimization method with energy methods and topological tools.
Klíčová slova
Cherrier inequality; Hardy–Littlewood–Sobolev inequality; Moser–Trudinger inequality; Nehari manifold; Neumann problem
Autoři
RAWAT, S.; RADULESCU, V.; SREENADH, K.
Vydáno
26. 10. 2024
Nakladatel
Wiley
ISSN
1522-2616
Periodikum
Mathematische Nachrichten
Ročník
297
Číslo
10
Stát
Spolková republika Německo
Strany od
3847
Strany do
3869
Strany počet
23
URL
Plný text v Digitální knihovně
BibTex
@article{BUT193714,
author="Sushmita {Rawat} and Vicentiu {Radulescu} and Konijeti {Sreenadh}",
title="Planar Choquard equations with critical exponential reaction and Neumann boundary condition",
journal="Mathematische Nachrichten",
year="2024",
volume="297",
number="10",
pages="3847--3869",
doi="10.1002/mana.202400095",
issn="1522-2616",
url="https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202400095"
}