Detail publikace
Singular non-autonomous (p,q)-equations with competing nonlinearities
PAPAGEORGIOU, N. QIN, D. RADULESCU, V.
Originální název
Singular non-autonomous (p,q)-equations with competing nonlinearities
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider a parametric non-autonomous (p,q)-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is (p−1)-linear and where it is (p−1)-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter λ>0 (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in C01(Ω̄) and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.
Klíčová slova
(p-1)-linear and (p-1)-superlinear perturbations; Minimal solution; Nonlinear regularity theory; Solution multifunction; Truncations and comparisons
Autoři
PAPAGEORGIOU, N.; QIN, D.; RADULESCU, V.
Vydáno
2. 2. 2025
ISSN
1878-5719
Periodikum
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
Ročník
81
Číslo
104225
Stát
Nizozemsko
Strany počet
25
URL
BibTex
@article{BUT194033,
author="Nikolaos S. {Papageorgiou} and Dongdong {Qin} and Vicentiu {Radulescu}",
title="Singular non-autonomous (p,q)-equations with competing nonlinearities",
journal="NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS",
year="2025",
volume="81",
number="104225",
pages="25",
doi="10.1016/j.nonrwa.2024.104225",
issn="1878-5719",
url="https://doi.org/10.1016/j.nonrwa.2024.104225"
}