Detail publikace

Nodal solutions for the nonlinear Robin problem in Orlicz spaces

BAHROUNI, A. MISSAOUI, H. RADULESCU, V.

Originální název

Nodal solutions for the nonlinear Robin problem in Orlicz spaces

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper we consider a non-linear Robin problem driven by the Orlicz g-Laplacian operator. Using variational technique combined with a suitable truncation and Morse theory (critical groups), we prove two multiplicity theorems with sign information for all the solutions. In the first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In the second, we prove the existence of at least three non-trivial solutions with sign information (one positive, one negative, and the other change sign) and order. The result of the nodal solution is new for the non-linear g-Laplacian problems with the Robin boundary condition.

Klíčová slova

Constant sign solutions; Critical groups; g-Laplacian; Nodal solutions; Orlicz–Sobolev space; Robin boundary value; Truncated functional

Autoři

BAHROUNI, A.; MISSAOUI, H.; RADULESCU, V.

Vydáno

7. 2. 2025

ISSN

1878-5719

Periodikum

NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS

Ročník

81

Číslo

104186

Stát

Nizozemsko

Strany počet

29

URL

BibTex

@article{BUT194034,
  author="Anouar {Bahrouni} and Hlel {Missaoui} and Vicentiu {Radulescu}",
  title="Nodal solutions for the nonlinear Robin problem in Orlicz spaces",
  journal="NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS",
  year="2025",
  volume="81",
  number="104186",
  pages="29",
  doi="10.1016/j.nonrwa.2024.104186",
  issn="1878-5719",
  url="https://doi.org/10.1016/j.nonrwa.2024.104186"
}