Detail publikace
Analyzing anomalies in industrial networks: A data-driven approach to enhance security in manufacturing processes
KUCHAŘ, K. FUJDIAK, R.
Originální název
Analyzing anomalies in industrial networks: A data-driven approach to enhance security in manufacturing processes
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Industrial networks are adapted to their specific requirements, especially in terms of industrial processes. To ensure sufficient security in these networks, it is necessary to set and use security policies that complement government regulations, recommendations, and relevant security standards. This paper aims to provide an in-depth analysis of the anomalies occurring within the networks and propose a structure for collecting valuable data from the experimental site based on dividing anomalies into three main categories: security, operational, and service anomalies (and regular traffic recognition). We present a proof-of-concept solution/design aggregating data in industrial networks for advanced anomaly classification. Multiple data sources such as industrial communication, sensor data (additional sensors controlling device behavior), and HW status data are used as data sources. A total of three scenarios (using a physical testbed) were implemented, where we achieved an accuracy of 0.8541/0.9972 in advanced anomaly classification.
Klíčová slova
Neural networks (NN); Anomaly; Anomaly classification; Sensory data; Cybersecurity; Industrial Control System (ICS); Operational Technology (OT)
Autoři
KUCHAŘ, K.; FUJDIAK, R.
Vydáno
28. 2. 2025
ISSN
0167-4048
Periodikum
COMPUTERS & SECURITY
Ročník
153
Číslo
June 2025
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1
Strany do
15
Strany počet
15
URL
BibTex
@article{BUT197746,
author="Karel {Kuchař} and Radek {Fujdiak}",
title="Analyzing anomalies in industrial networks: A data-driven approach to enhance security in manufacturing processes",
journal="COMPUTERS & SECURITY",
year="2025",
volume="153",
number="June 2025",
pages="1--15",
doi="10.1016/j.cose.2025.104395",
issn="0167-4048",
url="https://www.sciencedirect.com/science/article/pii/S0167404825000847?utm_campaign=STMJ_219742_AUTH_SERV_PA&utm_medium=email&utm_acid=277298152&SIS_ID=&dgcid=STMJ_219742_AUTH_SERV_PA&CMX_ID=&utm_in=DM547969&utm_source=AC_"
}