Detail publikace
Regularity for a class of degenerate fully nonlinear nonlocal elliptic equations
FANG, Y. RADULESCU, V. ZHANG, C.
Originální název
Regularity for a class of degenerate fully nonlinear nonlocal elliptic equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider a wide class of fully nonlinear integro-differential equations that degenerate when the gradient of the solution vanishes. By using compactness and perturbation arguments, we give a complete characterization of the regularity of viscosity solutions according to different diffusion orders. More precisely, when the order of the fractional diffusion is sufficiently close to 2, we obtain Hölder continuity for the gradient of any viscosity solutions and further derive an improved gradient regularity estimate at the origin. For the order of the fractional diffusion in the interval (1, 2), we prove that there is at least one solution of class Cloc1,α. Additionally, if the order of the fractional diffusion is in the interval (0, 1], the local Hölder continuity of solutions is inferred.
Klíčová slova
INTEGRODIFFERENTIAL EQUATIONS; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; HOLDER CONTINUITY; INTERIOR
Autoři
FANG, Y.; RADULESCU, V.; ZHANG, C.
Vydáno
6. 6. 2025
ISSN
0944-2669
Periodikum
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Ročník
64
Číslo
5
Stát
Spojené státy americké
Strany počet
29
URL
BibTex
@article{BUT198077,
author="Yuzhou {Fang} and Vicentiu {Radulescu} and Chao {Zhang}",
title="Regularity for a class of degenerate fully nonlinear nonlocal elliptic equations",
journal="CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS",
year="2025",
volume="64",
number="5",
pages="29",
doi="10.1007/s00526-025-03023-4",
issn="0944-2669",
url="https://link.springer.com/article/10.1007/s00526-025-03023-4"
}