Detail publikace
Upcycling atmospheric CO2 to polyhydroxyalkanoates via sequential chemo-biocatalytic processes
By Bruch, M. Sanchez-Velandia, JE. Rodriguez-Pereira, J. Rich, M. Pearcy, N. Narancic, T. Garcia-Verdugo, E. Sans, V. O'Connor, K. Zanatta, M
Originální název
Upcycling atmospheric CO2 to polyhydroxyalkanoates via sequential chemo-biocatalytic processes
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The reduction of greenhouse gas emissions and the shift away from petrochemical-derived materials are critical goals in modern industrial development and societal progress. Addressing these intertwined challenges demands innovative and sustainable solutions. Here, we present the first example of synthesizing poly[R-(-)-3-hydroxybutyrate] (PHB) from atmospheric CO2, utilizing a streamlined and integrated process that combines both chemo- and bio-catalytic conditions. Central to our approach is the development of an immobilized catalytic system that efficiently converts atmospheric CO2 into sodium formate, establishing a sustainable carbon source for formatotrophic organisms. Through Adaptive Laboratory Evolution (ALE), we enhanced the growth rate of the bacterium Cupriavidus necator H16, enabling it to utilize formic acid and formate as the sole carbon and energy sources. The evolved strain, C. necator ALE26, achieved a 1.8-fold increase in the maximum growth rate (mu(max) = 0.25 +/- 0.02 h(-1)), attributed to the loss of the megaplasmid pHG1. Employing the adapted strain, we report the highest PHB production rate in continuous fermentation using C. necator for growth on formate. The development of the different stages (sorption and chemo- and bio-transformation) under compatible conditions that minimize the number of work-up stages demonstrates a major advancement in converting atmospheric CO2 into valuable biopolymers, thus simultaneously contributing to the reduction of greenhouse gases in the atmosphere and to a circular economy of biobased polymers that diminish fossil fuel dependence.
Klíčová slova
FORMIC-ACID, RALSTONIA-EUTROPHA, CARBON-DIOXIDE
Autoři
By Bruch, M.; Sanchez-Velandia, JE.; Rodriguez-Pereira, J.; Rich, M.; Pearcy, N.; Narancic, T.; Garcia-Verdugo, E.; Sans, V.; O'Connor, K.; Zanatta, M
Vydáno
9. 12. 2024
Nakladatel
ROYAL SOC CHEMISTRY
Místo
CAMBRIDGE
ISSN
1463-9262
Periodikum
GREEN CHEMISTRY
Ročník
26
Číslo
24
Stát
Spojené království Velké Británie a Severního Irska
Strany od
11885
Strany do
1189
Strany počet
14
URL
BibTex
@article{BUT191210,
author="Jhonatan {Rodriguez Pereira} and Manuel {Bruch} and Julian E. {Sanchez-Velandia, Julian E.} and Michelle {Rich} and Nicole {Pearcy} and Tanja {Narančić} and Eduardo {Garcia-Verdugo} and Víctor {Sans} and Kevin {O'Connor} and Marcileia {Zanatta}",
title="Upcycling atmospheric CO2 to polyhydroxyalkanoates via sequential chemo-biocatalytic processes",
journal="GREEN CHEMISTRY",
year="2024",
volume="26",
number="24",
pages="11885--1189",
doi="10.1039/d4gc04228j",
issn="1463-9262",
url="https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc04228j"
}